

Figura 20: è necessario mantenere puliti i punti di aspirazione dell'aria

Tipologie di vespaio

Il termine vespaio viene usato in edilizia per intendere differenti configurazioni dell'attacco a terra e non in maniera propriamente univoca:

- può essere un volume interamente vuoto o riempito parzialmente o totalmente con materiale di varia natura: macerie, terra, ghiaia, ecc.;
- può essere interrato, parzialmente interrato o fuori terra;
- può avere altezze diverse, da un minimo di circa 10 centimetri fino anche a 60-70 centimetri;
- può essere praticabile, nel senso di accessibile per ispezione-manutenzione impianti, verifiche del solaio a terra, ecc. nel caso sia ovviamente vuoto;
- lo scopo principale è quello di separare la casa dall'umidità del terreno e in alcuni Regolamenti Edilizi viene prescritto come soluzione tecnica obbligatoria anche con il nome di "vuoto sanitario", a sottolineare appunto la funzione igienica per il mantenimento di adeguati valori di umidità relativa degli gli ambienti sovrastanti;
- in alcune tipologie di costruzione può essere assente e l'edificio poggia direttamente con il solaio a terra sul terreno (costruzioni d'epoca di modesto pregio) oppure su platee di fondazione in calcestruzzo (con il medesimo scopo di costituire una barriera all'umidità);

Ai fini della riduzione delle concentrazioni di gas radon, risulta particolarmente utile conoscere l'esistenza e caratteristiche del vespaio in quanto è il principale elemento tecnico sul quale è più agevole intervenire.

Per intervenire sul volume-vespaio si possono adottare tali soluzioni:

se il vespaio ha un volume completamente vuoto (Figura 21), sono applicabili entrambe le tecniche di depressione e
pressurizzazione individuando un punto idoneo al perimetro attraverso il quale forare il muro perimetrale e
intercettare il volume;

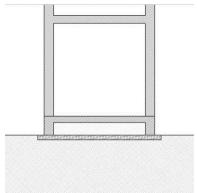


Figura 21: vespaio sotto l'edificio completamente vuoto

 se il vespaio è strutturalmente realizzato con tavelloni posti sopra muricci in mattoni nei quali siano state lasciate delle aperture che mettano in comunicazioni i diversi comparti (Figura 22), sarà sufficiente individuare un punto idoneo per intercettare il volume;

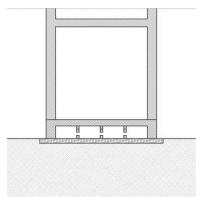


Figura 22: vespaio sotto l'edificio compartimentato aperto

 se il vespaio è realizzato con casseri a perdere in materiale plastico (igloo), ovvero la soluzione costruttiva che realizza un vespaio perfettamente ventilabile, sarà sufficiente individuare un punto di aspirazione che intercetti una sezione libera all'interno di uno dei casseri (Figura 23);

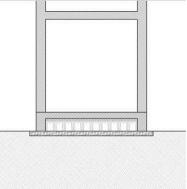


Figura 23: vespaio sotto l'edificio aperto con casseri a perdere in materiale plastico

se il vespaio è strutturalmente realizzato con tavelloni posti sopra muricci in mattoni nei quali però non siano state lasciate delle aperture che mettano in comunicazioni i diversi comparti (Figura 24), sarà necessario individuare più punti di aspirazione-ventilazione a seconda del numero di compartimentazioni in modo da realizzare un sistema aspirante in ogni volume, con tubazioni poi eventualmente canalizzate al medesimo aspiratore ma che agisca comunque sull'intera superficie. Si tratta di un intervento che può risultare complesso e presentare costi elevati per cui potrà essere considerato come un solaio a terra poggiante direttamente sul terreno. In questo caso andrà anche verificata la presenza di eventuali aperture/crepe/fori nel punto di connessione fra solaio a terra e parete verticale che potrebbero costituire dei punti di ingresso/uscita dell'aria limitando gli effetti dell'impianto.

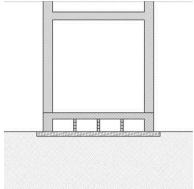


Figura 24: vespaio sotto l'edificio compartimentato chiuso

se il vespaio è parzialmente o totalmente riempito con materiale di riporto, ghiaia, macerie, ecc. (Figura 25), si potranno adottare le medesime tecniche del vespaio vuoto con particolare attenzione a individuare un buon punto di aspirazione/pressurizzazione nella parte più libera del volume. In questo caso inoltre, avendo un volume di minore dimensione da mettere in depressione/pressione, potrà anche essere utilizzato un ventilatore di potenza ridotta. Trattasi quindi di una situazione favorevole per via dei limitati volumi nel quale però l'aria può circolare e quindi si possono ottenere risultati soddisfacenti con potenze e consumi ridotti.

Se al contrario il volume è stato completamente riempito con materiale compatto (sabbia, macerie miste a residui di leganti, ecc.) ci si dovrà ricondurre alla tipologie del solaio a terra poggiante direttamente sul terreno in quanto,

con ogni probabilità, non si potrà avere alcuna circolazione d'aria.

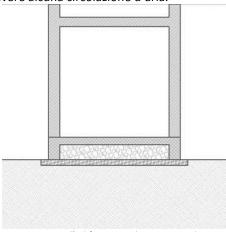


Figura 25: vespaio sotto l'edificio parzialmente o totalmente riempito

La linea separazione del "solaio a terra"

Gli schemi che seguono intendono fornire una prima classificazione delle possibili variabili che intervengono sulla linea che separa il gas dall'uomo (Figura 26).

In alcuni casi possono coesistere un volume-vespaio vuoto o parzialmente riempito sotto gli ambienti abitati, assieme a un secondo volume-vespaio pieno sottostante (interrato, seminterrato, controterra). Importante è quindi definire la linea orizzontale al di sotto della quale possono essere pensati degli interventi di mitigazione dell'ingresso del gas, quella comunemente costituita dall'elemento tecnico "solaio a terra" e inteso come l'elemento tecnico orizzontale più basso che separa gli ambienti abitabili da quelli non abitabili, ancorché eventualmente fruibili (cantine, rimesse, ecc.).

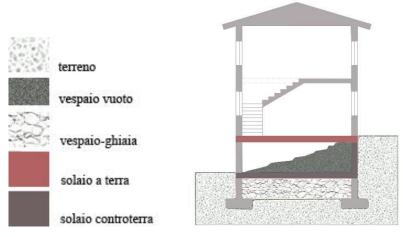


Figura 26: il solaio a terra costituisce la linea di separazione fra volumi abitati e volumi non abitati

Depressurizzare o pressurizzare i vespai?

In merito alla tecnica più opportuna in funzione della tipologia di solaio, si può partire dal presupposto che la tecnica della pressurizzazione richiede in genere una maggiore potenza dei ventilatori rispetto alla depressione e risente maggiormente delle perdite dovute alla non perfetta tenuta del volume pressurizzato.

E' consigliabile pressurizzare un vespaio libero o con compartimenti comunicanti fra loro laddove le dimensioni volumetriche siano abbastanza contenute e la pianta non particolarmente complessa, in caso contrario è preferibile depressurizzare (Figura 27).

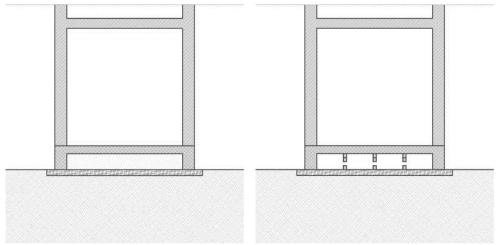


Figura 27: pressurizzare prevalentemente solo i vespai di volume ridotto, altrimenti meglio depressurizzare

I vespai realizzati con casseri a perdere in pvc di solito hanno una buona tenuta all'aria per la loro caratteristica costruttiva. In questo caso quindi le perdite di carico dovute alla tenuta del volume sono più limitate e la tecnica della pressurizzazione può dare dei risultati più interessanti anche per volumi abbastanza ampi (Figura 28). Le connessioni a incastro dei casseri e il successivo getto di completamento in calcestruzzo limitano infatti la permeabilità del sistema soprattutto verso gli ambienti abitati sovrastanti

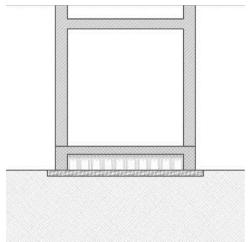


Figura 28: i vespai realizzati con casseri a perdere in materiale plastico hanno una buona tenuta all'aria

Nei vespai a compartimenti chiusi il successo della pressurizzazione è limitato e il rischio di avere dei volumi con pressioni diversificate può essere causa di trasmigrazione del gas da un volume all'altro fino a trovare una strada di ingresso per l'interno dell'edificio; in tali casi è preferibile utilizzare la tecnica della depressurizzazione (Figura 29).

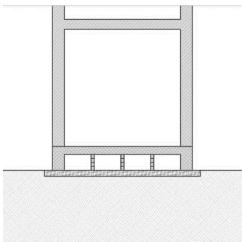


Figura 29: è sempre più opportuno depressurizzare i vespai compartimentati chiusi

Nel caso di un riempimento del vespaio poco poroso (terra, macerie fini e residui di legante, ecc.) senza alcuna lama d'aria nella parte alta entrambe le tecniche possono fallire e quindi è preferibile utilizzare la tecnica per il solaio a terra poggiante direttamente sul terreno (Figura 30).

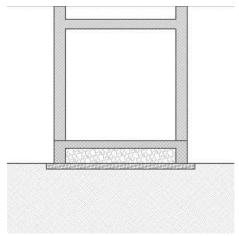


Figura 30: i vespai parzialmente o totalmente riempiti con materiale di riporto o terra possono essere pressurizzati o depressurizzati in funzione del riempimento.

Ventilazione naturale o ventilazione forzata?

Disponendo di un volume tecnico sotto l'edificio o di un vespaio sufficientemente libero in cui non sono presenti detriti, può essere ipotizzabile in prima istanza ricorrere alla ventilazione naturale realizzando delle bucature di 100-120 centimetri di diametro alla base perimetrale dell'attacco a terra (Figura 31). Laddove possibile è preferibile realizzare tali bucature nei prospetti nord e sud con l'accortezza di tenere più alti i fori a sud per una migliore aereazione.

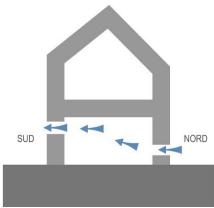


Figura 31: se il volume del vespaio è libero è possibile valutare la possibilità di una ventilazione naturale del volume.

Se i valori di concentrazione del radon ottenuti con questa tecnica non sono soddisfacenti e se desideri evitare l'uso di ventilatori, un sistema per incrementare la ventilazione naturale è quello di portare in quota una tubazione, oltre il cornicione di gronda (Figura 32), che grazie ai venti dominanti e all'effetto Venturi riesca a migliorare l'effetto aspirante.

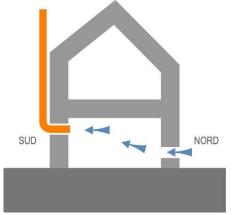


Figura 32: per incrementare la ventilazione naturale di un vespaio vuoto è possibile portare in quota la tubazione di evacuazione per innescare un effetto Venturi.

In mancanza di risultati soddisfacenti anche con questo accorgimento, è opportuno ricorrere alla posa di un ventilatore collegato alle tubazioni esistenti (Figura 33).

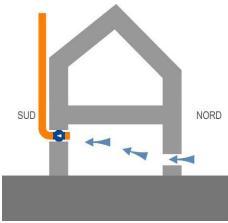


Figura 33: in mancanza di risultati adeguati con la ventilazione naturale sarà necessario utilizzare un ventilatore che potrà essere inserito nella canalizzazione già esistente

In caso di ventilazione naturale è indispensabile mantenere aperte una doppia serie di bucature contrapposte - di ingresso e di uscita dell'aria (Figura 34) – al fine di intercettare il gas ed espellerlo dai fori di uscita. Nel caso di ventilazione forzata risulta più conveniente sigillare fori di ingresso dell'aria per realizzare una maggiore depressione/pressione nei confronti del terreno; tale modalità è preferibile in caso di pressurizzazione (Figura 35).

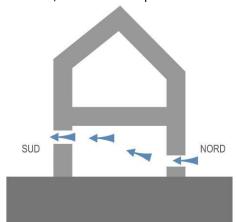


Figura 34: in caso di ventilazione naturale dovranno essere presenti bucature su due lati contrapposti dell'edificio, possibilmente nord-sud.

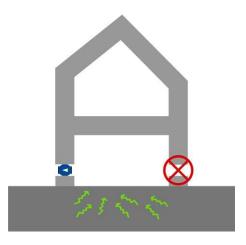


Figura 35: in caso di ventilazione forzata tramite ventilatore dovrà essere presente la sola bocca di aspirazione e chiuse tutte le altre bucature al perimetro in modo che l'impianto agisca nei confronti del terreno e non sull'ingresso dell'aria dalla bucatura contrapposta.

Temporizzazione degli impianti

Le potenze dei ventilatori utilizzati per pressurizzare o depressurizzare variano dai 20 ai 120 Watt con portate da 200 a 1000 m³/h, a seconda della tipologia costruttiva, dei livelli di concentrazione del gas e della tecnica costruttiva dell'attacco a terra. In certi casi si tratta di potenze non modeste che possono portare a consumi energetici elevati.

E' possibile anche temporizzare l'uso dei ventilatori in funzione dei livelli di concentrazione del radon indoor e soprattutto in funzione della velocità di discesa della concentrazione di radon dopo l'accensione e della sua velocità di risalita dopo lo spegnimento. Questo tipo di valutazione può essere fatto solo con una strumentazione di misura attiva (Figura 36).

Figura 36: Alcuni strumenti di misurazione attiva della concentrazione di radon

Seguendo un preciso protocollo spento/acceso/spento dei ventilatori, deve essere effettuato un monitoraggio in continuo delle concentrazioni di gas radon. Si propone di seguito un protocollo di misura:

- spento, almeno 9-10 giorni in modo da comprendere un fine settimana
- acceso, almeno 9-10 giorni in modo da comprendere un fine settimana
- spento, almeno due giorni (ora fissa)
- acceso, almeno due giorni (ora fissa)
- spento, almeno due giorni (ora fissa)
 - acceso, almeno due giorni (ora fissa)

in modo da comprendere un fine settimana

In questo modo si ottiene un andamento temporale delle concentrazioni di radon nelle diverse giornate e con ventilatori spenti e accesi (Figura 37), ma soprattutto si ottiene l'informazione circa la velocità di discesa del livello di radon dopo l'accensione e la sua velocità di risalita dopo lo spegnimento dei ventilatori.

La Figura 37 illustra un esempio dove sono visibili le variazioni di concentrazione che si registrano nel fine settimana, periodo durante il quale generalmente si modificano le abitudini di utilizzo degli edifici, e nel periodo diurno e notturno durante il quale gli scambi d'aria fra esterno e interno sono differenti.

Sulla base del monitoraggio temporale sarà quindi possibile valutare l'eventuale temporizzazione dei sistemi di ventilazione. Per esempio, se si tratterà di un edificio scolastico con presenza di personale e di alunni dalle ore 8 alle ore 16, i ventilatori potranno essere accesi dalle ora 06.00 alle ora 16.00 dei giorni in cui vi è attività scolastica, solo nel caso che l'attivazione dei ventilatori mostri significativi decrementi delle concentrazioni di gas radon nelle aule. Tale modalità gestionale consente notevoli risparmi in termini energetici.

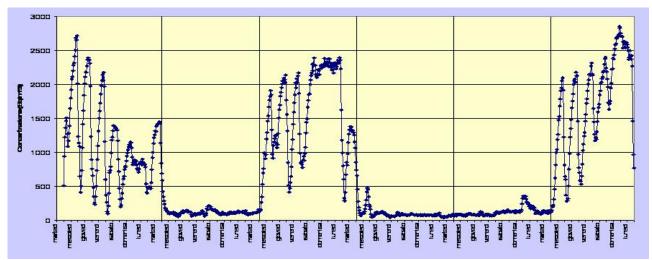


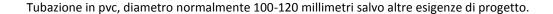
Figura 37: un esempio di andamento temporale della concentrazione del gas radon con ventilatori spenti durante il fine settimana in un edificio scolastico

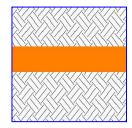
Il problema rumore

Sistemi di ventilazione di una certa potenza possono generare rumori e vibrazioni che, nel tempo, possono diventare particolarmente fastidiosi.

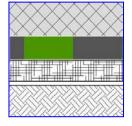
Oltre alla possibilità di temporizzare gli impianti, con eventuale spegnimento nelle ore notturne laddove la concentrazione del gas e la destinazione d'uso dell'edificio lo consenta, un accorgimento opportuno è quello da adottare dei sistemi di fissaggio delle tubazioni e dei ventilatori che attenuino le vibrazioni e ne impediscano il trasferimento alle strutture dell'edificio (Figura 38).

A questo proposito in commercio sono disponibili diversi prodotti che permettono di fissare gli elementi in modo da evitare trasmissione di vibrazioni. E' anche possibile utilizzare sistemi di posa fonoassorbenti e fonoisolanti che consentono di rivestire le tubazioni degli impianti attenuando il rumore proveniente dalla sorgente (ventilatore).




Figura 38: prodotti, materiali e sistemi per il fissaggio degli impianti e limitare la trasmissione di rumore e vibrazioni alle strutture dell'edificio.

TECNICHE DI PREVENZIONE E MITIGAZIONE - SCHEDE

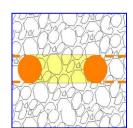

Negli schemi che seguono sono sintetizzate alcune soluzioni funzionali che rispecchiano modalità di intervento per la bonifica di edifici esistenti e la prevenzione delle nuove costruzioni.

Nei negli schemi grafici delle pagine successive, sono presenti alcune schematizzazioni grafiche interpretabili secondo la legenda che segue:

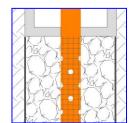
Membrana impermeabile verde/nera (bituminosa, pvc, polietilene, barriera al vapore, antiradon, ecc. in funzione del progetto) stesa sopra lo strato di magrone lisciato, livellato e privo di asperità e massetto impiantistico superiore (o altro strato di completamento).

Pozzetto (in calcestruzzo, plastica, polietilene, ecc.) di dimensioni circa (50 x 50 x 50) centimetri aperto nella parte inferiore e posato su uno strato di ghiaia grossa di 10-12 centimetri di spessore.

E' possibile impiegare anche un normale pozzetto in calcestruzzo "ribaltato", ossia con la faccia aperta verso il basso.


Pozzetto (in calcestruzzo, plastica, polietilene, ecc.) di dimensioni circa $50 \times 50 \times 50$ centimetri e comunque idoneo ad alloggiare il ventilatore di progetto.

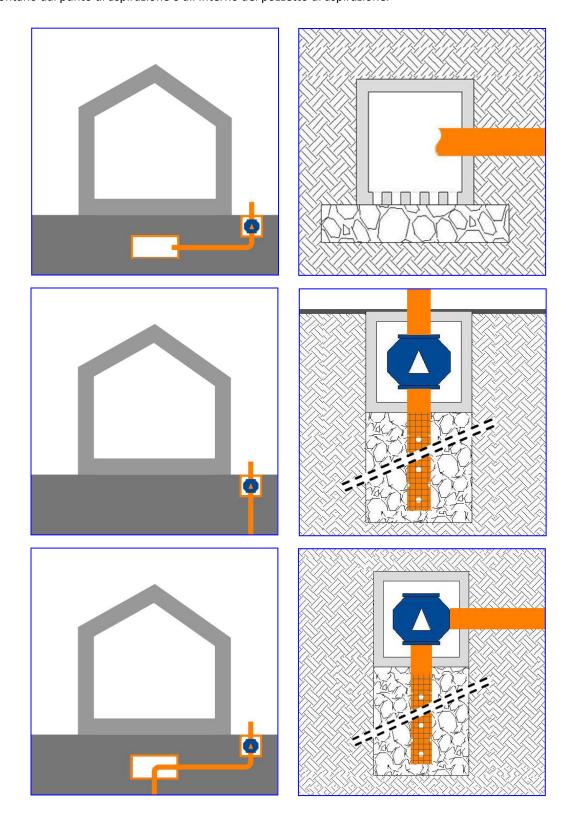
La tubazione in pvc potrà essere canalizzata su qualsiasi faccia del pozzetto in funzione del percorso previsto. Il coperchio del pozzetto nella parte superiore consentirà la messa in opera dell'impianto e la sua manutenzione. Andrà predisposto l'allacciamento elettrico.


Tubazioni drenanti (calcestruzzo, pvc, ecc.) presenti normalmente sotto le fondazioni di alcuni edifici per il drenaggio e l'allontanamento di eventuale acqua di falda in caso di risalita.

Il collegamento di queste tubazioni fra loro, nel momento della posa, consente di trasformarle in un sistema aspirante, laddove si verifichi la presenza eccessiva di radon, collegando una estremità a un ventilatore.

Tubazione in pvc, diametro normalmente 100-120 millimetri, salvo altre esigenze di progetto, all'estremità superiore collegata al ventilatore e destinata ad aspirare il radon nel terreno.

E' aperta all'estremità inferiore e presenta una serie di bucature del diametro di 25-30 millimetri sul perimetro. E' avvolta e protetta da un tessuto-non-tessuto per evitare che il materiale di riempimento dello scavo, ghiaia di grossa pezzatura, penetri nella tubazione.


Figura 39: tecniche di prevenzione e mitigazione

scheda riassuntiva: depressione – pressurizzazione del sottosuolo

L'ingresso del radon può essere controllato:

- **aspirando** l'aria dal **terreno** sotto l'edificio, intercettando il gas ed evacuandolo in atmosfera prima che entri negli ambienti;
- **insufflando** aria nel **terreno** al di sotto dell'edificio per creare una zona di sovrapressione che contrasti l'effetto risucchio creato dalla casa e spinga il gas al di fuori del perimetro della costruzione lasciando che si disperda in atmosfera.

In entrambi i casi è possibile impiegare un pozzetto oppure un tubo forato e collocare il ventilatore in un pozzetto autonomo lontano dal punto di aspirazione o all'interno del pozzetto di aspirazione.

